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1. (11 points)

(a) Complete the following definitions:

(i) (2 points) A real u ∈ R is said to be an upper bound for a set A ⊆ R if ∀a ∈ A a ≤ u.

(ii) (2 points) A real u ∈ R is called the supremum (or, the least upper bound) of a set A ⊆ R if u is
an upper bound and for any other upper bound v for A, u ≤ v. The last condition is equivalent
to saying that any v < u is not an upper bound for A.

(b) Let A,B ⊆ R be nonempty sets such that ∀a ∈ A ∀b ∈ B a ≤ b; in words, every element of A is less
than or equal to every element of B (draw a picture).

(i) (1 point) Is every element of B an upper bound for A? Just write YES or NO here: YES

(ii) (3 points) Deduce that sup(A) is a lower bound for B.

Solution. We need to show that ∀b ∈ B, sup(A) ≤ b. Fix an arbitrary b ∈ B. By the previous
part, b is an upper bound for A, so, by the definition of sup(A), sup(A) ≤ b.

(iii) (3 points) Conclude that sup(A) ≤ inf(B).

Solution. By the previous part, sup(A) is a lower bound for B, so it must be ≤ inf(B), by
the very definition of inf(B).
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2. (13 points)

(a) Let (xn)n be a sequence and L ∈ R.

(i) (2 points) Write the definition of lim
n→∞xn = L using the term eventually.

Definition. lim
n→∞xn = L if for every ε > 0 eventually ∣xn −L∣ < ε.

(ii) (2 points) Write the definition of lim
n→∞xn = L without using the term eventually.

Definition. lim
n→∞xn = L if for every ε > 0 there is N ∈ N such that ∀n ≥ N , ∣xn −L∣ < ε.

(b) (4 points) Let (xn)n and (yn)n be sequences and suppose that lim
n→∞xn = x and lim

n→∞ yn = y. Using

only the definition of limit (with or without the term eventually), show that lim
n→∞(yn −xn) = y −x.

Solution. Fix an arbitrary ε > 0. We need to show that eventually ∣yn − xn − (y − x)∣ < ε. By the
triangle inequality, we have

∣yn − xn − (y − x)∣ = ∣(yn − y) + (x − xn)∣ ≤ ∣yn − y∣ + ∣x − xn∣,

and because lim
n→∞xn = x and lim

n→∞ yn = y, we know that eventually ∣x − xn∣ <
ε
2 and eventually

∣yn − y∣ <
ε
2 . It follows that eventually both ∣x − xn∣ <

ε
2 and ∣yn − y∣ <

ε
2 hold, so eventually,

∣yn − xn − (y − x)∣ ≤ ∣yn − y∣ + ∣x − xn∣ <
ε

2
+
ε

2
= ε.

(c) (5 points) Let (an)n be an increasing sequence and (bn)n be a decreasing sequence. Suppose that
∀n,m ∈ N an ≤ bm and lim

n→∞(bn − an) = 0. Show that both of (an)n and (bn)n converge, and in fact,

lim
n→∞an = lim

n→∞ bn. You may use statements proved in class.

Hint: Once you prove that (an)n and (bn)n converge, it may help to denote their limits by a and
b, respectively.

Solution. Because ∀n ∈ N an ≤ b1 and ∀m ∈ N a1 ≤ bm, b1 is an upper bound for (an)n and
a1 is a lower bound for (bn)n, so by the Monotone Convergence Theorem, both (an)n and (bn)n
converge. Let a and b denote their limits, respectively. Then by the previous part, we know that
lim
n→∞(bn − an) = b − a. Thus, by the hypothesis, b − a = 0, so a = b.
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3. (16 points) Determine whether the following statements are true or false, and prove your answers.
You may use statements proved in class, but when showing convergence/divergence, do not use the
term eventually (it will not help anyway).

(a) (4 points) (4n2−1
n+2 )

n
converges.

Solution. FALSE. 4n2−1
n+2 =

4n− 1
n

1+ 2
n

≥ 4n − 1
n ≥ 3n ≥ n and the sequence (n)n is unbounded, so our

sequence is unbounded as well, and thus, diverges.

(b) (4 points) (4n−1
n+2 )

n
converges.

Solution. TRUE. 4n−1
n+2 =

4− 1
n

1
n
+ 2
n

. We use the theorem about limits and algebraic operations, working

from the bottom up:

(i) Basics: As shown in class, 1
n → 0. Also, any constant sequence converges to that constant.

(ii) Product of limits: Thus, 2
n → 0 because 2

n = 2 ⋅ 1n → 2 ⋅ 0. Similarly,

(iii) Sum of limits: 4 − 1
n → 4 − 0 = 4 and 1 + 2

n → 1 + 0 = 1.

(iv) Ratio of limits:
4− 1

n

1+ 2
n

→ 4
1 = 4.
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(c) (4 points) sin(πn4 )→ 0.

Solution. FALSE. Intuitively, the reason is that the values ±1 keep appearing in the sequence no
matter how far we go. Formally, we need to show that ∃ε > 0∀N ∈ N∃n ≥ N ∣ sin(πn4 )∣ ≥ ε. Taking
ε ∶= 1 works. Indeed, fix an arbitrary N ∈ N. We now have to find n ≥ N such that ∣ sin(πn4 )∣ ≥ 1.
But this is easy, just take n to be any number bigger than N that is of the form 4k + 2 (i.e. even,

but not divisible by 4). Then ∣ sin(πn4 )∣ = ∣ sin(π(4k+2)4 )∣ = ∣ sin(kπ + π
2 )∣ = ∣ ± 1∣ = 1.

(d) (4 points)
sin(πn

4
)

n → 0.

Solution 1. TRUE. We showed in class that if xn → 0 and (yn)n is bounded, then xnyn → 0. In
our case, xn =

1
n and yn = sin(πn4 ). Our (yn)n is bounded because for every n ∈ N, ∣yn∣ = ∣ sin(πn4 )∣ ≤ 1.

Our xn → 0. Thus
sin(πn

4
)

n = xnyn → 0.

Solution 2. TRUE. 0 ≤ ∣
sin(πn

4
)

n ∣ ≤ 1
n , so by the Squeeze Theorem, ∣

sin(πn
4
)

n ∣ → 0 and hence also
sin(πn

4
)

n → 0.

Solution 3. TRUE. We show this directly from the definition. Fix ε > 0. We need to find N ∈ N
such that ∀n ≥ N , ∣

sin(πn
4
)

n ∣ < ε. But for every n ∈ N,

∣
sin(πn4 )

n
∣ =

∣ sin(πn4 )∣

n
≤

1

n
,

so it is enough to find N ∈ N such that ∀n ≥ N , 1
n < ε. Take N to be any natural number greater

than 1
ε , for example N ∶= ⌈1ε⌉ + 1. Then, for any n ≥ N , we have 1

n ≥ 1
N > ε. Thus, we have that for

every n ≥ N ,

∣
sin(πn4 )

n
∣ ≤

1

n
< ε.
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Scratch paper


